Scalable Encoding and Transcoding

ENTHRONE WORKSHOP
WP4

BSOFT ltd, Italy
Presentation: Daniele Renzi
Outline

- Content providers aim at best serving as many device groups as possible by generating scalable video streams with optimized decoding points. The **Scalable Video Coding (SVC)** answers this need in an optimum way.

- However, some new terminal devices do not adopt SVC immediately and other legacy terminals only implement **H.264/AVC** decoding.

- The SVC base layer is totally H.264/AVC compliant. Therefore, a set-top-box without SVC would only be able to decode the targeted quality of a mobile phone (i.e., the base layer quality). This is not satisfactory.

- Therefore, **adaptation** mechanisms are necessary.

- One possibility to address the problem is **transcoding** from the SVC to the H.264/AVC standard.
SVC in the ENTHRONE framework

- SVC gives the benefit of relocating the burden of adaptation from network modules, specifically conceived for such a task, to the content provider.

- **Adaptation at the server level**: The adaptation is performed on the initially stored video content in scalable format, before IP packetization and transmission.

- That simplifies the adaptation process and saves some bandwidth compared to simulcasting single-layer streams.
Scalable Video Coding - The SVC standard

- **Scalability** has been a goal of video compression technologies for many years.

- For a long time the scalable video coding, e.g. MPEG-2 Scalable Extensions, has not had a big appeal in the market, mainly because of its high loss in terms of compression efficiency.

- The recent advances in video coding techniques led to the new standard **H.264/MPEG-4 Scalable Video Coding (SVC)** (Amendment 3 of ISO/IEC 14496-10, namely H.264/MPEG-4 AVC).
Scalable Video Coding - Concepts

- A video is called **scalable** when parts of it can be extracted as sub-streams which are still decodable to the decoder.
- Each sub-stream represents the source content in a reduced temporal, spatial and/or quality resolution compared to the original bit-stream.
- The source content is first encoded with low frame rate, low spatial resolution or low PSNR to form a **base layer**. The residual information between the base layer and the original content is then encoded to form one or more **enhancement layers**.
Scalable Video Coding — Temporal Scalability

- Temporal scalability is generally enabled by restricting motion-compensated prediction to reference pictures with a temporal layer less than or equal to the temporal layer of the picture to be predicted.
- SVC usually employs hierarchical B-pictures to provide temporal scalability.
- SVC provides a considerably higher degree of flexibility on a picture and sequence level.
Scalable Video Coding – Temporal Scalability
– Dyadic prediction structure

GOP (Group Of Pictures)
Scalable Video Coding — Temporal Scalability
– Non-dyadic prediction structure

GOP (Group Of Pictures)
Scalable Video Coding — Temporal Scalability
– Hierarchical prediction structure with delay of 0

GOP (Group Of Pictures)
Scalable Video Coding – Spatial Scalability

- **Multiple-layer coding.**
- Each spatial layer corresponds to a supported spatial resolution and is uniquely labelled by a so-called *dependency identifier (Did).*
- Within each layer, motion-compensated prediction and intra coding are employed in the same way as in single-layer coding.
- In order to exploit the redundancy between spatial layers, additional *inter-layer prediction* mechanisms are incorporated.
- In order to limit the memory requirements and decoder complexity, SVC stipulates that all spatial layers should have an identical coding order.
Scalable Video Coding — Spatial Scalability —
Multi-layer structure with inter-layer prediction

Did = 1

Did = 0

Inter-layer prediction
Scalable Video Coding — SNR Scalability

- One base layer with minimum quality/bitrate, one or more enhancement layers with higher quality/bitrate.
- Usually the quantizer is chosen as unique parameter for tuning the quality levels among the different layers.
- Depending on the applications, higher or lower granularity can be needed.
- **Coarse-Grained Scalability** (CGS) and **Medium Grain Scalability** (MGS).
Scalable Video Coding — SNR Scalability — Coarse-Grained Scalability (CGS)

- In principle, CGS is identical to spatially scalable coding with the only exception that all layers have an identical spatial resolution.
- Texture information is typically refined by **re-quantizing** the residual texture signal in the enhancement layer, with a smaller quantization step size compared to that used in the preceding CGS layer.
Scalable Video Coding — SNR Scalability — Coarse-Grained Scalability (CGS) advantages

- Simplicity.
- Low complexity compared to single-layer coding.
Scalable Video Coding — SNR Scalability — Coarse-Grained Scalability (CGS) drawbacks

- **Low granularity**: The CGS can only provide a very limited number of bit rate points.
- **Low efficiency**: The multi-layer concept of CGS scalability becomes less efficient when the relative rate difference between adjacent CGS layers gets relatively small.
- **Low flexibility**: CGS scalability is unable to provide sufficient flexibility for all the applications.
Scalable Video Coding – SNR Scalability – Medium-Grained Scalability (MGS)

- The MGS is advantageous over the CGS in that it contains a modified **high-level signaling**.
- That allows **bit rate switching** between different MGS layers in any access unit.
- **Graceful degradation**.
- With the MGS concept, any enhancement layer NAL unit can be discarded from an SNR scalable bit-stream, thus enabling **packet-based SNR scalable coding**.
Transcoding — General Approaches

- **Video transcoding** can enable multimedia devices of different capabilities or formats to exchange video content.

- Generally a transcoder can have two major tasks: **bit rate adjustment** and **format conversion**.
 - To suit available network bandwidth, a video transcoder can perform **dynamic bit rate adjustments** in the video stream without additional functional requirements in the decoder.
 - A video transcoder can provide **format conversion** to enable content exchange.

- For the time being, **several mainstream video compression standards** coexist in different multimedia applications.

- This makes transcoding necessary both within and across the standards to allow interaction between multimedia systems.
Transcoding — A Video Transcoder

- Adjustment of coding parameters of the compressed video.
- Spatial and temporal resolution conversions.
- Insertion of new information such as digital watermarks or logos.
- Enhanced error resilience.
Transcoding — Brute-Force Transcoding

- Methodology: fully decode the incoming source video stream and then re-encode the decoded source video into the target bit rate and/or format.

- The full decoding and re-encoding is complex and consumes tremendous processing time and possibly requires extra equipment.

- While still maintaining acceptable quality, significant savings in complexity can be achieved by reusing as much as possible the information contained in the original incoming bit-stream.
Transcoding – Spatial Domain Transcoding Architecture (SDTA) - 1
Transcoding — Spatial Domain Transcoding Architecture (SDTA) - 2

- **SDTA is flexible** in that its decoder-loop and encoder-loop can be independent of each other.
- The SDTA shown in previous figure **reuses the incoming motion vectors**. This process is indicated by dotted lines in the figure: the incoming motion information is transmitted to the Motion Compensation (MC) module in the encoding end and reused there.
Transcoding – Frequency Domain Transcoding Architecture (FDTA) - 1
Transcoding – Frequency Domain Transcoding Architecture (FDTA) - 2

- Only **entropy decoding** and **inverse quantization** is performed in the decoder end to get the transform coefficients of each macroblock.
- At the encoder end the motion compensated residual errors are encoded through **re-quantization** and **entropy coding**.
- After inverse quantization, the reference frame memory stores the DCT values, which are then fed to the frequency-domain motion compensation module to reduce the drift error.
- FDTA may require less computation but may suffer from the **drift** problem due to non-linear operations.
- FDTA also lacks flexibility and is mostly **appropriate to bit-rate transcoding**.
Transcoding — Transcoding of SNR Layers to H.264/AVC Single Layer - 1

- For the goal of converting CGS layers to H.264/AVC, a fast implementation technique known as the **CGS bit-stream rewriting** was proposed within the JVT (JVT-U043).
- In this approach, the syntax and semantics of the CGS layer are changed to enable a **fast rewriting of a CGS bit-stream into an H.264/AVC-formatted bit-stream**.
- No drift, no need for reconstructing the intensity values of the original sequence, but still able to derive the identical output that would otherwise be generated from an SVC decoder.
- **Merging multiple CGS layers** together.
- Basic idea: the additional overhead carried by SVC bit-streams is redundant for AVC bit-streams.
- It is then beneficial to **remove the SVC overhead** from the bit-stream, to reduce the bit rate required to deliver the same reconstruction quality.
Transcoding — Transcoding of SNR Layers to H.264/AVC Single Layer - 2

- Changes to the **Inter-coded macroblocks** of the CGS layer to enable the direct SVC-to-AVC mapping:
 - macroblocks that are inferred from base layer macroblocks must use the same **transformation size** as the base layer macroblock;
 - the mapping of an enhancement layer macroblock from a base layer macroblock shall occur in the **transform level domain**.

- **Intra-coded macroblocks** impose additional difficulties to the SVC-to-AVC rewriting: an intra-coded macroblock cannot be reconstructed by adding a signaled residual to a spatial prediction from its neighbors, as in IntraBL mode.

Hence, changes to the Intra-coded macroblocks of the CGS layer to enable the **direct SVC-to-AVC mapping**:
 - A **modified decoding process** that maps the intra prediction mode from the base layer to the enhancement layer. Intra prediction is then performed at the enhancement layer.
 - **Transform type for IntraBL macroblocks** must be the same as the co-located base layer macroblock.
 - Macroblocks coded by the **16x16 transform** in the base layer are also coded by 16x16 transform in the enhancement layer.
Transcoding — Transcoding of SNR Layers to H.264/AVC Single Layer — Test Results - 1

- Analysis was performed using the JSVM reference software.
- At first, CGS rewriting is compared with H.264/AVC single-layer coding.
- Second, CGS rewriting is compared with two-layer CGS coding to examine whether the CGS rewriting together with the subsequent single-layer decoding can outperform the normal SVC decoding for CGS bit-streams.
- Finally, CGS rewriting is compared with the brute force transcoding.
Transcoding — Transcoding of SNR Layers to H.264/AVC Single Layer — Test Results - 2

<table>
<thead>
<tr>
<th>QP for</th>
<th>QP for</th>
<th>AVC Single Layer</th>
<th>Brute Force</th>
<th>Rewriting</th>
<th>SVC with rewriting constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>27</td>
<td>1363.97</td>
<td>36.57</td>
<td>1280.48</td>
<td>35.37</td>
</tr>
<tr>
<td>35</td>
<td>29</td>
<td>955.38</td>
<td>34.65</td>
<td>1017.98</td>
<td>34.08</td>
</tr>
<tr>
<td>37</td>
<td>31</td>
<td>762.69</td>
<td>33.41</td>
<td>820.27</td>
<td>32.89</td>
</tr>
<tr>
<td>39</td>
<td>33</td>
<td>598.14</td>
<td>32.19</td>
<td>635.17</td>
<td>31.57</td>
</tr>
<tr>
<td>41</td>
<td>35</td>
<td>474.94</td>
<td>30.94</td>
<td>504.75</td>
<td>30.35</td>
</tr>
<tr>
<td>43</td>
<td>37</td>
<td>376.35</td>
<td>29.75</td>
<td>402.89</td>
<td>29.15</td>
</tr>
<tr>
<td>45</td>
<td>39</td>
<td>297.94</td>
<td>28.59</td>
<td>313.37</td>
<td>27.97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QP for</th>
<th>QP for</th>
<th>SVC without rewriting constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL</td>
<td>EL</td>
<td>Bit rate [kbps]</td>
</tr>
<tr>
<td>33</td>
<td>27</td>
<td>1589.38</td>
</tr>
<tr>
<td>35</td>
<td>29</td>
<td>1285.48</td>
</tr>
<tr>
<td>37</td>
<td>31</td>
<td>1053.21</td>
</tr>
<tr>
<td>39</td>
<td>33</td>
<td>835.10</td>
</tr>
<tr>
<td>41</td>
<td>35</td>
<td>674.74</td>
</tr>
<tr>
<td>43</td>
<td>37</td>
<td>550.35</td>
</tr>
<tr>
<td>45</td>
<td>39</td>
<td>436.56</td>
</tr>
</tbody>
</table>

Graphical Representation

- **Brute Force**
- **SVC (with rewriting constraints)**
- **Rewriting**
- **AVC Single Layer**
- **SVC (w/o rewriting constraints)**

Klagenfurt, Austria, 2008/05/07
Daniele Renzi
Tests conclusions: at the same source sequence, format and QP settings, the PSNR of the decoding result from the rewritten bit-stream is identical to that of SVC coding with rewriting constraints. This meets the property that the CGS rewriting and SVC decoding should generate identical outputs.
Conclusions – Scalable Video Coding

- The recent advances in video coding techniques led to the new standard **H.264/MPEG-4 Scalable Video Coding (SVC)**.
- The SVC standard guarantees higher efficiency than older video coding standards supporting scalability, such as MPEG-2 Scalable Extension.
- That allows using SVC to perform easy bit stream **adaptation**.
- SVC gives the benefit of relocating the burden of adaptation from network modules, specifically conceived for such a task, to the content provider.
- SVC adaptation is made possible by the hierarchical structure of the SVC stream, that permits to extract only a subset of the data contained in the bit stream, without the need for additional resource-consuming operations.
- SVC video content adaptation can be performed by either:
 - dropping enhancement layers;
 - **transcoding** to other video coding standard, e.g. H.264/AVC.
- We mainly focused on the SVC transcoding, by highlighting the status of the art, our devised approach to transcoding, and test results.
Conclusions - Transcoding

- Two transcoding solutions have been discussed, namely the spatial-domain transcoding architecture (SDTA) and the frequency domain transcoding architecture (FDTA).

- These general approaches have been mapped to SVC transcoding, where the re-encoding of inter-layer predicted macroblocks is a critical step to eliminate inter-layer dependencies.

- The rate distortion performance of CGS rewriting has been studied in comparison to H.264/AVC single-layer coding, brute force transcoding, and SVC scalable coding with and without rewriting constraints.

- The tests shown that the CGS rewriting can deliver a better rate distortion performance than the SVC scalable coding and is thus proven very effective in merging CGS layers into an H.264/AVC compatible target layer.
THANK YOU!

Comments, questions, etc. are welcome.